
Hand calculation number e

For most people who do programming and use the extended math package like the one called
“GNU Multiple Precision Arithmetic Library” or others which is available with many different
programming languages you cannot do the correct decimal calculation with the digits in error,
try it and check your results with mine? The problem with the GNU is that it is binary and not
decimal like humans use and the calculation extends beyond the required accuracy, you can not
set it to say 98 digits you can print a set number of digits from more. For your information I
have calculated PI to 100 digits by hand it took 108 pages and that result agreed with the results
of my PI program which has the same core program as my “e” program. A good example of the
problem can be seen at the web site “mathforum.org/dr.math/faq/faq.e.html. Note when doing
hand calculation you do not round up the value as they did in the example 13 times. You just
simply truncate the answer as this works to your advantage, if you want to expand your
calculation in the future you do not reinvent the wheel and start all over. In the above mentioned
example they did a 25 digit calculation and ended up with an answer one unit above than it
should be and said it was correct. There were 13 terms that were rounded up by one unit and the
extra unit also came in the last calculation which placed the total over the correct value. Their
value was "2.7182818284590452353602875" and should have been one unit less at
"2.7182818284590452353602874"; by the way the 26th digit is a 7 which would cause a round
up only if you know the extra digit. Because the answers were round up by one unit they must
have had extra digits beyond the 25 digits before the term was printed which is very common
when doing extended math calculation. In the last division they had a value of 16 and it needed
to be divide by 25 which should have been a 0 for 25 digits and not the incorrect answer of 1,
yes if you do extra digits which allows you to do auto round up the answer would become a 1.
The same effect was in the 22 digit answer which was their goal for doing the calculation; it
ended up being rounded up by 1 unit in the last digit too. This is what I am talking about in a
hand calculation you do not have the next digit to work with so you cannot round up and should
never do. If you create a program it needs to have the same results as a hand calculation would
do. The following listing is the values they should have produced the +1 at the end of the 13
lines is where the round up should have not occurred. As a justification of my statements, when
William Shanks published his 707 digits of his 709 digits calculated value of PI the last two
digits that were dropped was 92 and he did not use them to round up. For his 609 digits he also
dropped the last two digits which were only 08 which had no effect. In his book he listed all the
terms for his 530 digit calculation of PI and he also did not round up the terms. I can think of
two methods that may just work correctly if some one with extended math package would like
to try it.

I did the following hand calculation for 25 digits in 3 hours; it took seven pages for the total
calculation. I have placed the scanned pages on my web site for your viewing at
“engert.us/erwin/miscellaneous/Hand calculation number e.pdf”. In a similar location my 20, 40
and 100 hand digits calculation of PI can be found at the more general location
“engert.us/erwin/miscellaneous.html”

1/0! = 1.00000 00000 00000 00000 00000

http://mathforum.org/dr.math/faq/faq.e.html

1/1! = 1.00000 00000 00000 00000 00000
1/2! = 0.50000 00000 00000 00000 00000
1/3! = 0.16666 66666 66666 66666 66666 + 1
1/4! = 0.04166 66666 66666 66666 66666 + 1
1/5! = 0.00833 33333 33333 33333 33333
1/6! = 0.00138 88888 88888 88888 88888 + 1
1/7! = 0.00019 84126 98412 69841 26984
1/8! = 0.00002 48015 87301 58730 15873
1/9! = 0.00000 27557 31922 39858 90652 + 1
1/10! = 0.00000 02755 73192 23985 89065
1/11! = 0.00000 00250 52108 38544 17187 + 1
1/12! = 0.00000 00020 87675 69878 68098 + 1
1/13! = 0.00000 00001 60590 43836 82161
1/14! = 0.00000 00000 11470 74559 77297
1/15! = 0.00000 00000 00764 71637 31819 + 1
1/16! = 0.00000 00000 00047 79477 33238 + 1
1/17! = 0.00000 00000 00002 81145 72543
1/18! = 0.00000 00000 00000 15619 20696 + 1
1/19! = 0.00000 00000 00000 00822 06352
1/20! = 0.00000 00000 00000 00041 10317 + 1
1/21! = 0.00000 00000 00000 00001 95729
1/22! = 0.00000 00000 00000 00000 08896 + 1
1/23! = 0.00000 00000 00000 00000 00386 + 1
1/24! = 0.00000 00000 00000 00000 00016
1/25! = 0.00000 00000 00000 00000 00000 + 1

 e = 2.71828 18284 59045 23536 02862
This is the correct sum that they should have produced if they were doing the work correctly
and matched these 25 digits with the 12 unit error in the last digit.

See my hand calculation for 25 digits for the number “e”.

